Hilbertian Metrics on Probability Measures and Their Application in SVM?s
نویسندگان
چکیده
In this article we investigate the field of Hilbertian metrics on probability measures. Since they are very versatile and can therefore be applied in various problems they are of great interest in kernel methods. Quit recently Topsøe and Fuglede introduced a family of Hilbertian metrics on probability measures. We give basic properties of the Hilbertian metrics of this family and other used metrics in the literature. Then we propose an extension of the considered metrics which incorporates structural information of the probability space into the Hilbertian metric. Finally we compare all proposed metrics in an image and text classification problem using histogram data.
منابع مشابه
Hilbertian Metrics and Positive Definite Kernels on Probability Measures
We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on probability measures, continuing the work in [5]. This type of kernels has shown very good results in text classification and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian metrics of Topsøe such that it now includes all commonly used Hilbertian...
متن کاملThe Alpha-Beta-Symetric Divergence and their Positive Definite Kernel
In this article we study the field of Hilbertian metrics and positive definit (pd) kernels on probability measures, they have a real interest in kernel methods. Firstly we will make a study based on the Alpha-Beta-divergence to have a Hilbercan metric by proposing an improvement of this divergence by constructing it so that its is symmetrical the Alpha-Beta-Symmetric-divergence (ABS-divergence)...
متن کاملGeometrical aspects of statistical learning theory
Geometry plays an important role in modern statistical learning theory, and many different aspects of geometry can be found in this fast developing field. This thesis addresses some of these aspects. A large part of this work will be concerned with so called manifold methods, which have recently attracted a lot of interest. The key point is that for a lot of real-world data sets it is natural t...
متن کاملAPPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES
An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...
متن کاملApplication of genetic algorithm (GA) to select input variables in support vector machine (SVM) for analyzing the occurrence of roach, Rutilus rutilus, in streams
Support vector machine (SVM) was used to analyze the occurrence of roach in Flemish stream basins (Belgium). Several habitat and physico?chemical variables were used as inputs for the model development. The biotic variable merely consisted of abundance data which was used for predicting presence/absence of roach. Genetic algorithm (GA) was combined with SVM in order to select the most important...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004